

PBC Linear, a Pacific Bearing Company • 6402 East Rockton Road, Roscoe, IL 61073 USA • 1-800-962-8979 • www.pbclinear.com

FLEXIBILITY TO MEET APPLICATION REQUIREMENTS

- SIMO[®] machined for precision gualified rail surfaces, to within .050 mm (.002")
- Handles loads up to 10,020 N (2,252 lbs)
- · Multiple configurations provide pre-aligned, high performance v-wheel guidance for a wide range of applications (see application examples on pages 3-7)

Click here or visit www.pbclinear.com to read the IVT vs. Profile Rail whitepaper, "A Technical Comparison Between Integral V Technology and Linear Re-circulating Ball Bearing and Guideway Assemblies (Profile Rail)'

What Makes IVT Different?

EASY INSTALLATION

Integral VTM runs along a patent pending, pre-aligned, precision-machined anodized aluminum rail with high performance v-wheel cam rollers–eliminating mounting components and dramatically cutting assembly time.

INSTALLATION AND MOUNTING FEATURES

- · Feature t-slots for:
 - Rack and pinion mounting without drilled and tapped holes
 - Mounting of gussets in the corners
 - Accessory mounting such as sensors, wire ties, etc.
- End mounting features (AAG and ABK): use of lag bolts from the ends
- Lubrication, rail scraper, and wheel cover options available

Patented side adjust enables pre-load adjustment without removing the load from the carriage

No Bow

No Twist

No Warp

SIMULTANEOUS INTEGRAL MILLING OPERATION

PBC Linear has revolutionized traditional machining with the patent pending SIMO[®] (Simultaneous Integral Milling Operation). The SIMO process uses synchronized cutters, eliminating built-in extrusion variances by machining all critical edges concurrently in one pass. This ensures tight tolerances, limited variance and a remarkably straight and repeatable surface at negligible additional cost!

PATENT PENDING MACHINING PROCESS

- MACHINED PRECISION AT EXTRUSION PRICES
 - Rigid, accurate, repeatable
 - Low cost
 - Machined rail edges can be used as a reference when mounting

Link to the SIMO process video

Synchronized Cutters Eliminate Built-In Extrusion Variances

COMPARE SIMO VS. STANDARD ALUMINUM EXTRUSION

Straightness (Camber) Twist Flatness Standard Aluminum Extrusion .0125 in/ft (1 mm/m) 1/2° per ft (1.5° per m) .004 in (.10 mm)

 $\Rightarrow 6 \text{ TIMES BETTER } \Rightarrow$ $\Rightarrow 2 \text{ TIMES BETTER } \Rightarrow$ $\Rightarrow 2 \text{ TIMES BETTER } \Rightarrow$

<u>SIMO</u>

± .002 in/ft (.166 mm/m) < 1/4° per ft (.82° per m) .002 in (.0508 mm)

175 *Weight may vary slightly depending on carriage options. **Load ratings are based on standard carriage.

5.5

6.0

3.4

29.7

25.4

74.8

91.9

34.9

1,300

2.77

2.74

3.06

3.36

10.1

3,048

3,657

3,657

3,657

3,657

171

255

283

171

599

348

487

278

348

390

556

778

445

556

1,154

10,020

10,020

10,020

10,020

10,020

6,150

6,150

6,150

6,150

6,150

190

282

313

190

662

384

538

308

384

431

626

877

501

626

1,300

IVTAAB

IVTAAE

IVTAAQ

IVTAAG

IVTABK

8,900

8,900

8,900

8,900

8,900

5,560

5,560

5,560

5,560

5,560

Examples **Application**

Application Examples

SMALL TO MEDIUM IVT LARGE TO EXTRA-LARGE IVT **MEDIUM TO LARGE IVT INDUSTRIAL STOP GAUGE & PUSH FEED SYSTEM:** The Integral V linear guide system provides accurate positioning for band saws, punches, bending machines, and brakes. IVT reduces mounting components, while improving alignment and ease of installation. Link to material positioning video 30 **IVT RAIL CHOICE: AAB** 2 56 KIOSK & AUTOMATED RETAIL: IVT's low profile design and high repeatability make it an ideal solution for the tight spaces found in automated dispensing applications. Link to kiosk & mechanical delivery systems video **IVT RAIL CHOICE: AAE**

 SMALL TO MEDIUM MY
 MEDIUM TO LARGE IVT
 LARGE TO EXTRA-LARGE IVT

 AUDIO/VISUAL DISPLAY MOUNTS: Whether the linear motion system will be mounted vertically or horizontally, IVT provides the strength and versatility to ensure smooth motion-plus, fewer parts means less installation time and less more.

 Image: Note that the mounted vertically or horizontally, IVT provides the strength and versatility or ensure smooth motion-plus, fewer parts means less installation time and less more.

 Image: Note that the mounted vertically or horizontally, IVT provides the strength and versatility or ensure smooth motion-plus, fewer parts means less installation time and less more.

 Image: Note that the mounted vertically or horizontally, IVT provides the strength and versatility or ensure smooth motion-plus, fewer parts means less installation time and less more.

 Image: Note that the mounted vertically or horizontally, IVT provides the strength and versatility or the mounted vertically or horizontally.

 Image: Note that the mounted vertical design video

 Image: Note that the fasteners and reduce mounting components, while IVT carriages are equipped with eader rollers creating a clean, low maintenance

ERGONOMIC ASSIST: Integral V guide system handles the moment loads and provides smooth, low friction motion for hand tools in manufacturing and assembly operations.

solution for medical tables and emergency vehicles.

IVT RAIL CHOICE: AAQ

Link to ergonomic application video

Application Examples

Examples **Application**

IVT AAN

IVT AAN

SPECIFICATIONS

					Statio	: Load Ra	atings			Dynam	ic Load	Ratings			Moments	of Inertia	
	SERIES	# of Rollers	Weight (kg)*	Radial F ^{oy} (N)	Axial F ^{oz} (N)	Roll M ^{ox} (N-m)	Pitch M ^{oy} (N-m)	Yaw M ^{oz} (N-m)	Radial Fy (N)	Axial Fz (N)	Roll Mx (N-m)	Pitch My (N-m)	Yaw Mz (N-m)	Weight (kg/m)	L _Y (cm ⁴)	L _Z (cm ⁴)	Length (mm)
	IVTAAN	4	0.35	1,960	1,200	16	36	59	2,480	1,490	20	45	74	1.30	1.7	2.1	3,657
Fz Mz	Ma	Fx Fx	Fd = Fz = I Fy = J Mx, N	Dynamic Radial ca Axial cap Лу, Mz =	capacity pacity acity Moment	(LC) capacitie	(n (! es n	Conver ewton (N lbf) mete ewton - I	r sions I) x 0.224 r x 0.039 meter (N-	8 = lbs. 7 = inch m) x 8.8	51 = inI	*Weig bs.	ht may v	ary slight	ly dependin	ig on carria	age options.
CARRIAG	E			20.8 mm				- 80 mm				35.5 mm	2				
PRELOAD	ADJU	JSTM	ENTS														
Standard Side (CAM) Adj	justable																
PATENTE	D				ſ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0 V	ľ		\geq						

CARRIAGE ORDERING INFORMATION

IVT AAW

IVT AAW

0

SPECIFICATIONS

		Corrigno		Static	Load Ra	atings			Dynam	ic Load I	Ratings		Doil	Moment	s of Inertia	Max Dail
SERIES	# of Rollers	Weight (kg)*	Radial F ^{oy} (N)	Axial F ^{oz} (N)	Roll M ^{ox} (N-m)	Pitch M ^{oy} (N-m)	Yaw M ^{oz} (N-m)	Radial Fy (N)	Axial Fz (N)	Roll Mx (N-m)	Pitch My (N-m)	Yaw Mz (N-m)	Weight (kg/m)	L _Y (cm ⁴)	L _Z (cm ⁴)	Length (mm)
VTAAW	4	1.54	8,900	5,560	194	278	445	10,020	6,150	214	308	501	1.65	2.8	3.8	3,657

*Weight may vary slightly depending on carriage options.

newton (N) \times 0.2248 = lbs. (lbf) meter x 0.0397 = inchnewton - meter (N-m) x 8.851 = in.-Ibs

CARRIAGE

Fz

Mz ∂

Mx

Fd = Dynamic capacity (LC) Fz = Radial capacity

Mx, My, Mz = Moment capacities

Fy = Axial capacity

PRELOAD ADJUSTMENTS

LUBRICATION ACCESSORIES

Lubricator

CARRIAGE ORDERING INFORMATION

IVT AAB

IVT AAB

SPECIFICATIONS

Strikes ethod Curving in trans Part of the provided in the provide	1					Statio	a load B	atings			Dynam	he l oad	Batings			Momente	of Inertia	
VTAAL 4 2.42 0.00 5.56 171 348 556 0.102 0.10 0.14 0.28 2.7 5.5 2.4 Vielpitt may vary slightly depending on carriage Image: Constraint of the standard st		SERIES	# of Rollers	Carriage Weight (kg)*	Radial F ^{oy} (N)	Axial F ^{oz} (N)	Roll M ^{ox} (N-m)	Pitch M ^{oy} (N-m)	Yaw M ^{oz} (N-m)	Radial Fy (N)	Axial Fz (N)	Roll Mx (N-m)	Pitch My (N-m)	Yaw Mz (N-m)	Rail Weight (kg/m)	L _Y (cm ⁴)	L _Z (cm ⁴)	Max Rail Length (mm)
Weight may vary slightly depending on carringe weight may vary slightly depen		IVTAAB	4	2.42	8,900	5,560	171	348	556	10,020	6,150	190	384	626	2.77	5.5	25.4	3,048
PRELOAD ADJUSTMENTS LUBRICATION ACCESSORIES Standard Side (CAM) Adjustable I Lube Holder PATENTED I Lube Holder I Lube Holder I Lube Holder I Lube Holder I Lube Holder I I Lube Holder I I Lube Holder I I I Lube Holder I I I Lube Holder I I I I I I I I I I I I I I I I I I I	CARRIAGE Screw Length*: 25 *Recommende	Type (when r b Frame	Fx Fy incal Mou nounted to a Size (TY gth when b	2.42 Fd = Fz = Fy = Mx, N Mx, N My Idminum extru P): 40 x 40 otting IVT rai	B,900 Dynamic Radial cap Axial cap My, Mz = 32.6 mm J 32.6 mm J 4 32.6 mm J 5 5 5 5 5 5 1 to structu	17.9 m	m Size: 8/10		- 175 mm	sions) x 0.224 x 0.0397 neter (N-	8 = lbs. 7 = inch m) x 8.8	51 = inI	*Weig bs.	ht may va	2.// ary slightl	y dependin	23.4 Ing on carria	3,048 ge option:
CARRIAGE ORDERING INFORMATION IVT AAB C = A 2 X A 0 Integral V Technology	PRELOAD Standard Side (CAM) Adju PATENTE	ADJU ustable D	JSTM	ENTS		0			LUBR 1) Lu 2) Wh 3) Wh 1)	Polyme Lubricatu	er ver ver & L (2)	ACC ube Ho	Ider Rail scra (Removal		S	(3)		
Rail Type	CARRIAGE		DERIP	NG IN	FOR TAL	MAT AB		- 🔺	2	X	A	Ca Ca O Preloa A - Side (C	arriage - Standard d Type AM) screw	Lengt Length adjustable	h			

IVT AAE

IVT AAE

SPECIFICATIONS

			Corriggo		Statio	: Load Ra	atings			Dynam	ic Load	Ratings		Doil	Moments	of Inertia	Max Dail
	SERIES	# of Rollers	Weight (kg)*	Radial F ^{oy} (N)	Axial F ^{oz} (N)	Roll M ^{ox} (N-m)	Pitch M ^{oy} (N-m)	Yaw M ^{oz} (N-m)	Radial Fy (N)	Axial Fz (N)	Roll Mx (N-m)	Pitch My (N-m)	Yaw Mz (N-m)	Weight (kg/m)	L _Y (cm ⁴)	L _Z (cm ⁴)	Length (mm)
	IVTAAE	4	3.47	8,900	5,560	255	487	778	10,020	6,150	282	538	877	2.74	6.0	74.8	3,657
Fz Mz 0 0 0 0	M	Fx Fy	Fd = Fz = Fy = . Mx, 1	Dynamic Radial cap Axial cap My, Mz =	capacity pacity acity Moment	(LC) capacitie	C ne (I s ne	ONVER ewton (N bf) meter ewton - n	sions) x 0.224 r x 0.0397 neter (N-I	8 = lbs. 7 = inch m) x 8.85	51 = inII	*Weigh	nt may va	ary slightl	y dependin	g on carria	ge options.
CARRIAG	E															5	
32.6 mm	Tyr (when 5 Frame	bical Mou mounted to a Size (TY igth when t	225 m	m le sision) Framu Il to structu	e T-Slot S ural framin	Size: 8/10	22 22	53 mm								Nº 1	
PRELOAD	ADJU	JSTN	IENTS					.UBR	ICAT	ION	ACC	ESSO	DRIE	S			
Standard Side (CAM) Adj	iustable D				0	•		1) Lu 2) Wr 3) Wr 1)	be Hold neel Cov neel Cov Polyme Lubricate	er ver ver & L (2)	ube Ho	lder Rail scraf Removab	ar Der Ile)		(3)		

CARRIAGE ORDERING INFORMATION

IVT AAQ

IVT AAQ

SPECIFICATIONS

			Corriggo		Static	Load Ra	atings			Dynan	nic Load	Ratings		Pail	Moments	of Inertia	Max Pail
	SERIES	# of Rollers	Weight (kg)*	Radial F ^{oy} (N)	Axial F ^{oz} (N)	Roll M ^{ox} (N-m)	Pitch M ^{oy} (N-m)	Yaw M ^{oz} (N-m)	Radial Fy (N)	Axial Fz (N)	Roll Mx (N-m)	Pitch My (N-m)	Yaw Mz (N-m)	Weight (kg/m)	L _Y (cm ⁴)	L _Z (cm ⁴)	Length (mm)
	IVTAAQ	4	3.47	8,900	5,560	283	278	445	10,020	6,150	313	308	501	3.06	3.4	91.9	3,657
Fz												*Weig	ht may va	ary slightly	y dependin	g on carria	ge options.
Mz z o o o o o o o o o o o o o o o o o o	Mx My	Fx Fy	Fd = 1 Fz = F Fy = A Mx, N	Dynamic Radial cap Axial capa Ay, Mz =	capacity pacity acity Moment	(LC) capacitie	n (I es n	Conver ewton (N bf) mete ewton - r	r sions I) x 0.224 r x 0.039 meter (N-	8 = lbs. 7 = inch m) x 8.8	51 = inI	lbs.					2
CARRIAG	E															5	
17.9 mm			225	mm				=						-			
32.6 mm																10	12
[2				↑ 44.4 26 mm		T			Z.	-		-	
	Typ (when r	nical Mou mounted to a	nting Fram	e sion)						-		2	-	5			
Screw Length*: 12	2 Frame	Size (TY	P): 40 x 80	Frame	T-Slot S	Size : 8/10					~						
	eu screw ieri	gui when i				y via a t-fi	ul.										
PRELOAD	ADJL	JSTM	ENTS					LUBR	RICAT	ION	ACO	CESS	ORIE	S			
Standard				<u>~</u>				1) Lu	be Hold	ler							
Side (CAM) Adj	ustable		/。	0	\rightarrow			(2) W (3) W	heel Co heel Co	ver & I	uhe Ho	older			(3)	\sim	
PATENTE	DK	$\sim c$	>		0	\rightarrow		d) 11		(0)		1001		\sim		J.	\sim
		\searrow	6	> /	°//		0	"		(2)			. K	(DE)	- AL		
								Ś	E C				nor	\searrow	N.		
ay									Lubricat	or	¥	(Removal	ble)		V		
CARRIAG	E ORE	DERIN	IG IN	FOR	MAT	ION											

IVT AAG

*Weight may vary slightly depending on carriage options.

IVT AAG

SPECIFICATIONS

_																	
			Corriggo		Statio	: Load Ra	atings			Dynam	ic Load	Ratings		Doil	Moment	s of Inertia	Max Dail
	SERIES	# of	Weight	Radial	Axial	Roll	Pitch	Yaw	Radial	Axial	Roll	Pitch	Yaw	Weight			Iviax nali
	OLINEO	Rollers	(kn)*	Foy	F ^{oz}	Mox	Moy	Moz	Fy	Fz	Mx	My	Mz	(kn/m)	(cm4)	(cm ⁴)	(mm)
			("9)	(N)	(N)	(N-m)	(N-m)	(N-m)	(N)	(N)	(N-m)	(N-m)	(N-m)	(kg/iii)			()
	IVTAAG	4	2.42	8,900	5,560	171	348	556	10,020	6,150	190	384	626	3.36	29.7	34.9	3,657

Fd = Dynamic capacity (LC) Fz = Radial capacity

Fy = Axial capacity Mx, My, Mz = Moment capacities

0

3

 \bigcirc

Conversions

newton (N) x 0.2248 = lbs. (lbf) meter x 0.0397 = inch newton - meter (N-m) x 8.851 = in.-lbs

CARRIAGE

PRELOAD ADJUSTMENTS

Standard

Side (CAM) Adjustable

PATENTED

LUBRICATION ACCESSORIES

CARRIAGE ORDERING INFORMATION

0

Polymer

Lubricator

IVT ABK Features & Benefits

FOR LARGE FORMAT APPLICATIONS & HEAVY LOADS

COMPONENT OPTIONS

V-Guide Bearing System

- Embedded hardened steel raceways reduce mounting components
- SIMO[®] machined for precision qualified rail surfaces
- High load capacity
- Optimized extrusion design provides a large scale structural member

Patented side adjust enables pre-load adjustment without removing the load from the carriage

Profile Rail Guide System

- Pre-aligned profile rail eliminates mounting and alignment problems and cuts assembly time in half
- SIMO[®] machined for precision qualified rail surfaces
- Recirculating ball bearing blocks provide rigid performance
- · Designed for 20 mm profile rail
- · Smooth and quiet operation

DRIVE OPTIONS (See page 24 for details)

Belt Drive

Ball Screw

Rack Drive

Features & Benefits **IVT ABK**

RAIL FEATURES & OPTIONS

SIMO[®] qualified surface and t-slot for mounting profile rail

Space for drive mechanism: belt, ball screw, or rack drive

Space for thread forming screw (x 4)

MACHINED PRECISION AT EXTRUSION PRICES Pre-aligned Profile Rail Guides

SIMO[®] machined for precision qualified rail surfaces
 —Syncronized cutters eliminate built-in extrusion variances
 —Machined rail edges can be used as a reference when mounting

NEW

- High load capacity
- Optimized extrusion design provides a large scale structural member
- Rigid, accurate, repeatable
- Low cost

IVT ABK Rail & Carriage

Rail & Carriage IVT ABK

SPECIFICATIONS

					Chatta		Almana			Dunom	in Lond I	Detinne			B.C	and the sector.	
		# of	Carriage	Badial	Avial		Pitch	Yaw	Radial	Dynan Avial	Roll	Pitch	Yaw	Rail	woments	or inertia	Max Rail
	SERIES	Rollers	Weight	Foy	F ^{0Z}	Mox	Moy	Moz	Fy	Fz	Mx	My	Mz	Weight	L _Y	L _Z	Length (mm)
			(ky)	(N)	(N)	(N-m)	(N-m)	(N-m)	(N)	(N)	(N-m)	(N-m)	(N-m)	(ky/iii)	(cm ⁴)	(cm+)	(11111)
	IVTABK	4	4.3	8,900	5,560	599	390	1,154	10,020	6,150	662	431	1,300	10.1	175	1,300	3,657
Fz													*Weight	may vary	slightly depe	ending on car	riage options
Mz 🥑 🍸	Mx	Fx	Ed. 1	Dunamia a	anaoity (C	nvor	eione								
\downarrow	S	\sim	Fa = 1 Fz = F	Radial capa	apacity (acitv	LG)	ne	wton (N) x 0.224	8 = Ibs.							
	× (Fy = A	Axial capac	city		(lb	f) meter	x 0.0397	= inch							
\sim			Mx, N	/ly, Mz = N	/loment c	apacities	s ne	wton - r	neter (N-ı	n) x 8.8	51 = inlt	os.					
///>	Mur	`Ev															
Į/	iviy	гу															5
	-																
ARRIAG	E																
RT																	
am Roller Tec	hnology	T										_			[17.7]	•	
Guide Bearin	g													-	.70		
ption Shown		[61.	5]							_		0			1 I		
onsult factory	for	2.4:	2 []		1 755	$\tilde{\lambda}$	5		7	5	25			[12.7]		
ofile Rail opt	ion.		Þ		≰ ~	י קנ	5)r	ษัร		\rightarrow	\exists	.50	l	102.3 J 4.03	
		-	L		_رز_												
					$\left[\sum_{i} \right]$	2				لى ^							
	n Applica	tion En	gineer		رلام			100			L C	ו					
-						5 2	-2		הם כ			/					
		ICTM	ENITE				Ζ.		ICAT					c			
RELOAD	ADJL	JSTM	ENTS				L	UBR	ICAT	ION	ACC	ESS	ORIE	S			
RELOAD tandard	ADJU	JSTM	ENTS				L (1	UBR I) Lu	ICAT	ION er	ACC	ESS	ORIE	S			
RELOAD tandard de (CAM) Ad	ADJL	JSTM	ENTS				L (1	UBR 1) Lu 2) Wi	ICAT be Hold neel Cov	ION er ver	ACC	ESS	ORIE	S	(3)		
RELOAD andard de (CAM) Ad	ADJL	JSTM	ENTS	<u>^</u>			L (1 (2	UBR 1) Lu 2) Wi 3) Wi	ICAT be Hold neel Cov	ION er ver ver & L	ACC	ESS	ORIE	S	(3)		
RELOAD tandard de (CAM) Ad	ADJU justable	JSTM	ENTS	<u>^</u> 0	0	•	L (1 (2 (3	UBR 1) Lu 2) Wr 3) Wr	be Hold neel Cov	ION er ver ver & L	ACC	CESS(ORIE	S	(3)		>>
RELOAD tandard de (CAM) Ad PATENTE	ADJU		ENTS		0	°	L (1 (2 (1	UBR 1) Lu 2) Wr 3) Wr	be Hold neel Cov	er ver ver & L (2)	ACC	der	ORIE	S	(3)		
PRELOAD tandard ide (CAM) Ad	ADJU justable		Contraction of the second seco		0	•	L (1 (2 (3 (1	UBR 1) Lu 2) Wr 3) Wr	ICAT be Hold heel Cov heel Cov	er ver ver & L (2)	ACC ube Hol	ESS Ider		S	(3)		
PRELOAD tandard ide (CAM) Adj	ADJU		ENTS		0	•	L (1 (2 (1	UBR 1) Lu 2) Wr 3) Wr 1)	ICAT be Hold heel Cov	er ver ver & L (2)	ACC	der		S	(3)		
RELOAD tandard de (CAM) Ad	ADJU	JSTM	ENTS		0	•	L (1 (2 (3	UBR 1) Lu 2) Wr 3) Wr 1)	ICAT be Hold neel Cov neel Cov	er ver & L (2)		der Rail scrap		S	(3)		
RELOAD tandard de (CAM) Ad PATENTE	ADJU iustable	JSTM	ents		0	•	L (1 (1 (1	UBR 1) Lu 2) Wr 3) Wr 1)	Polymen Lubricatio	er ver ver & L (2)	ACC	der Rail scra Removal	DRIE	S	(3)		
PRELOAD itandard ide (CAM) Ad PATENTE	ADJU	JSTM	ENTS		0		L (1 (1	UBR 1) Lu 2) Wh 3) Wh 1)	De Hold heel Cov heel Cov Polyme.	ion er ver & L (2)		der Rail scrap Removal		S	(3)		
PRELOAD itandard ide (CAM) Adj PATENTE	ADJU iustable		ENTS				L (1 (2 (1	UBR 1) Lu 2) Wr 3) Wr 1)	Polyme, Lubricato	ION er /er & L (2)	ACC	der Rail scraf Removal	DRIE	S	(3)		
PRELOAD tandard ide (CAM) Ad PATENTE	ADJU iustable D (E ORI	DERIF	ENTS	FORA	© //	♪ ON	L (1 (2 (3 (1	UBR 1) Lu 2) Wr 3) Wr 1)	Polymen Lubricato	ION er ver & L (2)		der Rail scra _R Removal	DRIE	S	(3)		
RELOAD andard le (CAM) Ad PATENTE	ADJU iustable D E ORI	DERIN	ENTS	¢ ¢ fora	©	° ON	L (1 (3 (1	UBR 1) Lu 2) Wr 3) Wr 1)	ICAT be Hold heel Cov heel Cov	ION er ver & L (2)		der Rail scraf Removal	DRIE	S	(3)		
RELOAD tandard de (CAM) Ad PATENTE ARRIAG	ADJU iustable D C	DERIN	IG IN	FORA		• • •	L (1 (1 (1	UBR 1) Lu 2) Wr 3) Wr 1)	Polymeel Lubricato	ION er ver & L (2)	ACC ube Hol	der Rail scraf Removal	DRIE	5	(3)		
PRELOAD tandard ide (CAM) Ad PATENTE	ADJU iustable D (E ORI	DERIN	ENTS	FORA	C MATI) ON	L (1 (1 (1	UBR 1) Lu 2) Wr 3) Wr 1)	Polymeel Lubricate	ION er ver & L (2)	ACC ube Hol	der Rail scraf Removal	DRIE	5	(3)		
PRELOAD tandard de (CAM) Ad PATENTE	ADJU iustable D	DERIP	ENTS		© MATI) ON	L (1 (1 (1	UBR 1) Lu 2) Wr 3) Wr 1)	Polymea Lubricate	ION er ver & L (2)	ACC ube Hol	der Rail scraf Removal	DRIE	S	(3)		
PRELOAD tandard de (CAM) Ad PATENTE	ADJU justable D	DERIN	ENTS	FORA I AB	MATI) ON	L (1 (1	UBR 1) Lu 2) Wr 3) Wr 1)	Polymen Lubricatu	ION er ver & L (2)	ACC ube Hol	ESS der Rail scrap Removal	ORIE	S	(3)		
PRELOAD tandard ide (CAM) Ad PATENTE	ADJU iustable D	DERIF	ENTS	FORA Mal V ogy	C MATI) ON	L (1 (1	UBR 1) Lu 2) Wr 3) Wr 1)	Polymen Lubricato	ION er ver & L (2)	ACC ube Hol	ider Rail scra Removal Standard L Standard L Type A) screw ac	DRIE	S	(3)		
PRELOAD Standard ide (CAM) Ad PATENTE	ADJU iustable D C	DERIP	ENTS	FORA al V ogy ype	© MATI	• • •	L (1 (1	UBR 1) Lu 2) Wr 3) Wr 1)	Polyment Lubricato	ION er ver & L (2) or	ACC ube Hol	ESS Ider Rail scrap Removal Standard L Type A) screw actions	DRIE	S	(3)	ubrication	is highly
PRELOAD itandard ide (CAM) Ad PATENTE	ADJU iustable D C	DERIP	ENTS	FORA al V ogy ype		• • •	L (1 (1	UBR 1) Lu 2) Wr 3) Wr 1)	Polymen Lubricato	ION er ver & L (2) or	ACC ube Hol	ESS Ider Rail scrap Removal	DRIE	S	(3)	ubrication	is highly ed for IVT
PRELOAD Standard Bide (CAM) Ad PATENTE	ADJU iustable D C	DERIP	ENTS	FORA		• • •	L (1 (1) (1)	UBR 1) Lu 2) Wr 3) Wr 1)	Polymeel Cov	ION er ver & L (2) or A D D D D D D D D D D D D D D D D D D	ACC ube Hol	ider Rail scrap Removal	DRIE	S	(3)	ubrication	is highly ed for IVT

Roller Type

2 - Sealed

Consult Factory • 800-962-8979

IVT ABK Driven Systems

Bearing Options for All Drive Types

- Cam Roller Technology: V-Guide Bearings
- Profile Rail Technology: Profile Rail Guideways

- Ideal for use with V-Guide wheel bearings in high speed applications
- · Performs well in contaminated environments
- PBC designed motor and idler ends

 Can support a variety of design configurations
- Motor mount for Nema 23 and 34
 Nema 34 motor shown
- Belt type: ATL 5 12 mm

V-Guide Roller Bearings

Belt Drive

Polymer Covers Protect Ball Screw

Ball Screw

- Rigid ball nut performance in high-precision applications - Ball screw diameters 16 - 25 mm
- Good for Z-axis and high thrust applications
- PBC designed motor and idler ends
 Can support a variety of design configurations
- Motor mount for Nema 23 and 34 (Nema 34 motor shown)
- Optional polymer cover
- · Lead screw with polymer nut option available

Rack Drive

- Ideal for extended long length travel
- Typical rack: RA16

Email an Application Engineer

24 LINEAR MOTION SOLUTI

Profile Rail Guides

Ball Screw

Driven Systems **IVT ABK**

Drives & Accessories

- Belt DriveMounting BracketsWheel Covers
- Ball Screw
- MotorsLubrication Kits
- Rack Drive
 Sensor Brackets
 Cable Carriers

C

*

Rack Drive

INTEGRAL

Consult Factory • 800-962-8979

Worldwide Headquarters PBC Linear A Pacific Bearing Co.

Fax:

6402 E. Rockton Road

Roscoe, IL 61073 USA

sales@pbclinear.com

www.pbclinear.com

Toll-Free: 1.800.962.8979

1.815.389.5790

PBO A PACIFIC BEARING CO.

www.pbclinear.com

European Branch PBC Lineartechnik GmbH A Pacific Bearing Co.

Röntgenstr. 8 40699 Erkrath, Germany Telefon: 0049 2104 957440 0 Fax: 0049 2104 957440 9

> info@pbclinear.de www.pbclinear.de

PBC Linear has a global network a distributors with thousands of locations worldwide. Visit www.pbclinear.com to find a distributor near you.

DISTRIBUTED BY

© 2012 PBC Linear[®], A Pacific Bearing Company • "PBC Linear" and "PBC Lineartechnik GmbH" are subsidiaries of Pacific Bearing Company ("PBC"). The data and specifications in this publication have been carefully compiled and are believed to be accurate and correct. It is the responsibility of the user to determine and ensure the suitability of PBC's products for a specific application. PBC's only obligation will be to repair or replace, without charge, any detective components in returned promptly. No liability is assumed beyond such replacement. Specifications and dimensions are subject to change without notice. Other corporate and product names, images, text and logos may be trademarks or copyrights of other companies and are used only for explanation and to the owners benefit; without intent to infringe. This document may not be reproduced, in part or whole, without the prior written authorization of PBC. Consult www.pbclinear.com for the latest technical updates.